COE 561
Digital System Design & Synthesis
Resource Sharing and Binding

Dr. Aiman H. El-Maleh
Computer Engineering Department
King Fahd University of Petroleum & Minerals

Outline

- Sharing and Binding
- Resource-dominated circuits.
 - Flat and hierarchical graphs.
- Register sharing
- Multi-port memory binding
- Bus sharing and binding
- Non resource-dominated circuits.
- Module selection.
Allocation and Binding

- **Allocation**
 - Number of resources available.

- **Binding**
 - Mapping between operations and resources.

- **Sharing**
 - Assignment of a resource to more than one operation.

- **Optimum binding/sharing**
 - Minimize the resource usage.

Optimum Sharing Problem

- **Scheduled sequencing graphs.**
 - Operation concurrency well defined.

- **Consider operation types independently.**
 - Problem decomposition.
 - Perform analysis for each resource type.

- **Minimize resource usage.**
Compatibility and Conflicts

- **Operation compatibility**
 - Same resource type.
 - Non concurrent.

- **Compatibility graph**
 - Vertices: operations.
 - Edges: compatibility relation.

- **Conflict graph**
 - Complement of compatibility graph.

Algorithmic Solution to the Optimum Binding Problem

- **Compatibility graph.**
 - Partition the graph into a minimum number of cliques.
 - Find clique cover number.

- **Conflict graph.**
 - Color the vertices by a minimum number of colors.
 - Find chromatic number.

- **NP-complete problems - Heuristic algorithms.**
Example

<table>
<thead>
<tr>
<th>t1</th>
<th>ALU1: 1, 3, 5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2</td>
<td>ALU2: 2, 4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>t3</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Comparability graph
- Graph $G(V, E)$ has an orientation (i.e. directed edges) $G(V, F)$ with the transitive property.
- $(v_i, v_j) \in F \cup (v_j, v_k) \in F \Rightarrow (v_i, v_k) \in F$.

Interval graph
- Vertices correspond to intervals.
- Edges correspond to interval intersection.
- Subset of chordal graphs
 - Every loop with more than three edges has a chord (i.e. an edge joining two non-consecutive vertices in the cycle).

Efficient algorithms exist for coloring and clique partitioning of interval, chordal, and comparability graphs.
Non-Hierarchical Sequencing Graphs

- The compatibility/conflict graphs have special properties
 - Compatibility: Comparability graph.
 - Conflict: Interval graph.
- Polynomial time solutions
 - Golumbic's algorithm.
 - Left-edge algorithm.

Example

Intervals Corresponding to Conflict Graph
Left-Edge Algorithm

- **Input**
 - Set of intervals with *left* and *right* edge.

- **Rationale**
 - Sort intervals by *left* edge.
 - Assign non-overlapping intervals to first color using the sorted list.
 - When possible intervals are exhausted increase color counter and repeat.

```plaintext
LEFT_EDGE(I) {
    Sort elements of I in a list L in ascending order of l;
    c = 0;
    while (some interval has not been colored) do {
        S = 0;
        r = 0;
        while (∃ e ∈ L such that l_e > r) do {
            s = First element in the list L with l_s > r;
            S = S ∪ {s};
            r = r_s;
            Delete s from L;
        }
        c = c + 1;
        Label elements of S with color c;
    }
}
```

Example

ILP Formulation of Binding

- Boolean variables b_{ir}
 - Operation i bound to resource r.
- Boolean variables x_{il}
 - Operation i scheduled to start at step l.
- Each operation v_i should be assigned to one resource
 \[
 \sum_{r=1}^{a} b_{ir} = 1 \quad \forall i
 \]
- At most, one operation can be executing, among those assigned to resource r, at any time step
 \[
 \sum_{i=1}^{n_{type}} b_{ir} \sum_{m=l-d+1}^{l} x_{im} \leq 1 \quad \forall l \quad \forall r
 \]

Example...

- Operation types: Multiplier, ALU
- Unit execution delay
- A feasible binding satisfies constraints
 \[
 \sum_{r=1}^{a} b_{ir} = 1, \quad \forall i : Type(v_i) = 1 \\
 \sum_{r=1}^{a} b_{ir} x_{il} \leq 1, \quad l = 1, 2, ..., \lambda + 1, \quad r = 1, 2, ..., a_i \\
 \sum_{r=1}^{a_2} b_{ir} = 1, \quad \forall i : Type(v_i) = 2 \\
 \sum_{r=1}^{a_2} b_{ir} x_{il} \leq 1, \quad l = 1, 2, ..., \lambda + 1, \quad r = 1, 2, ..., a_2
 \]
... Example

- Constants in X are 0 except
 \(x_{1,1}, x_{2,1}, x_{3,2}, x_{4,3}, x_{5,4}, x_{6,2}, \)
 \(x_{7,3}, x_{8,3}, x_{9,4}, x_{10,1}, x_{11,2} \).

- An implementation with
 \(a_1=2 \) multipliers:

 \[
 b_{i1} + b_{i2} = 1, \quad \forall i \in \{1, 2, 3, 6, 7, 8\} \\
 \sum_{i \in \{1, 2, 3, 6, 7, 8\}} b_{i1}x_{il} \leq 1, \quad l = 1, 2, \ldots, 5 \\
 \sum_{i \in \{1, 2, 3, 6, 7, 8\}} b_{i2}x_{il} \leq 1, \quad l = 1, 2, \ldots, 5
 \]

- Solutions
 - \(b_{1,1}=1, b_{2,2}=1, b_{3,1}=1, b_{6,2}=1, \)
 \(b_{7,1}=1, b_{8,2}=1. \)

Hierarchical Sequencing Graphs ...

- Hierarchical conflict/compatibility graphs.
 - Easy to compute.
 - Prevent sharing across hierarchy.

- Flatten hierarchy.
 - Bigger graphs.
 - Destroy nice properties.
 - Graphs may no longer have special properties i.e., comparability graph, interval graph.
 - Clique partitioning and vertex coloring intractable problems.
Hierarchical Sequencing Graphs

Model calls
- When two link vertices corresponding to different called models are not concurrent
 - Any operation pair of same resource type in the different called models is compatible.
- Concurrency of called models does not necessarily imply conflicts of operation pairs in the models.

Example: Model Calls
- Model a consists of two operations: addition, followed by multiplication
- Addition delay is 1, multiplication delay is 2
Example: Branching Constructs

- All operations take 2 time units
- Start times: $t_a=1$, $t_b=3$, $t_c=t_d=2$

Register Binding Problem

- Given a schedule
 - Lifetime intervals for variables.
 - Lifetime overlaps.
- Conflict graph (interval graph).
 - Vertices ↔ variables.
 - Edges ↔ overlaps.
 - Interval graph.
 - Left-edge algorithm. (Polynomial-time).
- Find minimum number of registers storing all the variables.
- Compatibility graph (comparability graph).
Example

- Six intermediate variables that need to be stored in registers \{z_1, z_2, z_3, z_4, z_5, z_6\}
- Six variables can be stored in two registers

Register Sharing: General Case

- **Iterative constructs**
 - Preserve values across iterations.
 - Circular-arc conflict graph.
 - Coloring is intractable.

- **Hierarchical graphs**
 - General conflict graphs.
 - Coloring is intractable.

- **Heuristic algorithms.**
Example

- 7 intermediate variables, 3 loop variables, 3 loop invariants
- 5 registers suffice to store 10 intermediate loop variables

```python
def foo(a, b, c):
    x = a + b
y = x + c
z = y + d
```

Example: Variable-Lifetimes and Circular-Arc Conflict Graph
Multiport-Memory Binding …

- Multi-port memory arrays used to store variables.
- Find minimum number of ports to access the required number of variables.
- Assuming variables access memory always through the same port
 - Problem reduces to binding variables to ports.
 - Port compatibility/conflict.
 - Similar to resource binding.
- Assuming variables can use any port
 - Decision variable \(x_{il} \) is TRUE when variable \(i \) is accessed at step \(l \).
 - Minimum number of ports

\[
\max_{1 \leq l \leq \lambda + 1} \sum_{i=1}^{n_{var}} x_{il}.
\]

... Multiport-Memory Binding

- Find maximum number of variables to be stored through a fixed number of ports \(a \).
 - Boolean variables \(\{b_i, i = 1, 2, \ldots, n_{var}\} \):
 - Variable \(i \) is stored in array.
- The maximum number of variables that can be stored in a multiport-memory with \(a \) ports is obtained by:

\[
- \max \sum_{i=1}^{n_{var}} b_i \text{ such that } \\
- \sum_{i=1}^{n_{var}} b_i \cdot x_{il} \leq a \quad l = 1, 2, \ldots, \lambda + 1
\]
Example

- One port $a = 1$
 - $\{b_2, b_4, b_8\}$ non-zero.
 - 3 variables stored: $\{v_2, v_4, v_8\}$.

- Two ports $a = 2$
 - 6 variables stored: $\{v_2, v_4, v_5, v_{10}, v_{12}, v_{14}\}$

- Three ports $a = 3$
 - 9 variables stored: $\{v_1, v_2, v_4, v_6, v_8, v_{10}, v_{12}, v_{13}\}$

Bus Sharing and Binding

- Busses act as transfer resources that feed data to functional resources.
- Find the minimum number of busses to accommodate all data transfers.
- Find the maximum number of data transfers for a fixed number of busses.
- Similar to memory binding problem.
- ILP formulation or heuristic algorithms.
Example

- **One bus**
 - 3 variables can be transferred.

- **Two busses**
 - All variables can be transferred.

Sharing and Binding for General Circuits

- **Area and delay influenced by**
 - Steering logic, wiring, registers and control circuit.
 - E.g. multiplexers area and propagation delays depend on number of inputs.
 - Wire lengths can be derived from statistical models.

- **Binding affects the cycle-time**
 - It may invalidate a schedule.

- **Control unit is affected marginally by resource binding.**
Unconstrained Minimum Area Binding

- Area cost function depends on several factors
 - resource count, steering logic and wiring.
- In limiting cases, resource sharing may affect adversely circuit area.
- Example
 - Circuit with n 1-bit add operations
 - Area of 1-bit adder is area\text{_add}
 - Area of a MUX is a function of number of inputs
 \[\text{area\text{_mux}} = \text{area\text{_mux}}^r \cdot (i-1), \] where \text{area\text{_mux}}^r is a constant
 - Total area of a binding with a resources is
 \[a \cdot (\text{area\text{_add}} + \text{area\text{_mux}}) + n \cdot \text{area\text{_mux}}^r \]
 - Area is increasing or decreasing function of a according to relation
 \[\text{area\text{_add}} > \text{area\text{_mux}}^r. \]

Unconstrained Minimum Area Binding

- Edge-weighted compatibility graph
 - Edge weights represent level of desirability of sharing
 - Clique covering

```c
TSERNO: G_s(V, E, W) { while (E ≠ ∅) do { 
  lw = max \{w \mid (u, v) ∈ E\};
  E' = \{(u, v) ∈ E \mid w = lw\};
  G_s(V', E', W') = subgraph of G_s(V, E, W) induced by E';
  while (E' ≠ ∅) do { 
    Select (v_1, v_2) ∈ E' such that v_1 and v_2 have the most neighbors in common;
    C = \{v_1, v_2\};
    Delete edges (v_1, v_2) if (v_1, v_2) ∈ E' \forall v_1 ∈ V';
    Delete vertex v_2 from V';
    while (one vertex adjacent to v_1 in G_s(V', E', W')) do { 
      Select v_3 such that (v_1, v_3) ∈ E' and v_1 and v_3 have the most neighbors in common;
      C = C ∪ \{v_3\};
      Delete edges (v_1, v_3) if (v_1, v_3) ∈ E' \forall v_1 ∈ V';
      Delete vertex v_3 from V';
    }
    Save clique C in the clique list;
  }
  Delete the vertices in the clique list from V';
}
```
Unconstrained Minimum Area Binding

- Tseng's algorithm considers repeatedly subgraphs induced by vertices with same weight edges.
- Graphs with decreasing values of weights considered.
- Unweighted clique partitioning of subgraphs.

Example
- Assume following edges have weight of 2
 - \{v_1, v_3\}, \{v_1, v_6\}, \{v_1, v_7\}, \{v_3, v_7\}, \{v_6, v_7\}
- Other edges have weight 1
- Clique \{v_1, v_3, v_7\} is first identified
- Clique \{v_2, v_6, v_8\} is then identified

Module Selection Problem ...

- Library of resources
 - More than one resource per type.

Example
- Adder
 - Ripple-carry adder.
 - Carry look-ahead adder.
- Multiplier
 - Fully parallel
 - Serial-Parallel
 - Fully serial

Resource modeling
- Resource subtypes with
 - (area, delay) parameters.
... Module Selection Problem

- **ILP formulation**
 - Decision variables b_j
 - Select resource sub-type.
 - Determine (area, delay).

 $$d_j = \sum_{r=1}^{\tau} b_r \cdot delay_r, \quad j = 1, 2, \ldots, n_{opt}; \quad \overline{a} \text{ is a resource upper bound}$$

- **Heuristic algorithms**
 - Determine minimum latency with fastest resource subtypes.
 - Recover area by using slower resources on non-critical paths.

Example

- Multipliers with
 - (Area, delay) = (5,1) and (2,2)
- ALU with
 - (Area, delay) = (1,1)
- Latency bound of 5.
- Area cost is $7 + 2 = 9$
Example

- **Latency bound of 4.**
 - Fast multipliers for \(\{v1, v2, v3\} \).
 - Slower multipliers can be used elsewhere.
 - Less sharing.
 - Assume \(v8 \) uses a slow multiplier: Area = 12 + 2 = 14

- **Minimum-area design uses fast multipliers only.**
 - Area = 10 + 2 = 12